
CAD/CAPP Integration using Feature Ontology

Christel Dartigues *, Parisa Ghodous **, Michael Gruninger ***, Denis Pallez**, Ram Sriram***

*I3S UNSA-CNRS - 2000, route des lucioles, Les Algorithmes - bât. Euclide B, BP.121, 06903 Sophia Antipolis
– Cedex – France
dartigue@unice.fr

**LIRIS, University Claude Bernard of Lyon, 43, Boulevard du 11 novembre 1918

69622 Villeurbanne Cedex, France
{ghodous, dpallez }@liris.cnrs.fr

***NIST, 100 Bureau Drive, Gaithersburg, MD 20899-3460, USA

sriram@nist.gov, gruninger@mie.utoronto.ca

Abstract:
In a collaborative computer-supported engineering environment, the interoperation of various applications will
need a representation that goes beyond the current geometry-based representation, which is inadequate for
capturing semantic information. The primary purpose of this paper is to discuss a semantically-based information
exchange protocol that will facilitate seamless interoperability among current and next generation computer-
aided design systems (CAD) and between CAD and other systems that use product data. We describe an
ontological approach to integrating computer-aided design (CAD) and computer-aided process planning (CAPP).
Two commercial software applications are used to demonstrate our approach. The approach involves the
development of a shared ontology and domain specific ontologies in the KIF (Knowledge Interchange Format)
language. Domain specific ontologies--which are feature-based—are developed after a detailed analysis of the
CAD and the CAPP software. Mapping between the domain ontologies and the shared ontology is achieved by
several mapping rules. The approach is validated by using a variety of parts.

Keywords: CAD; CAPP; Interoperability; Ontologies; Design; Process Planning; Knowledge Interchange
Format.

1. Introduction

The early part of this millennium has witnessed
the emergence of an Internet-based engineering
marketplace, where engineers, designers, and
manufacturers from small and large companies are
collaborating through the Internet to participate in
various product development and marketing
activities [1, 2, 3, 4]. This will be further enhanced
by the next generation manufacturing environment,
which will consist of a network of engineering
applications, where state of the art multi-media tools
and techniques will enhance closer collaboration
between geographically distributed applications,
virtual reality tools will allow visualization and
simulation in a synthetic environment, and
information exchange standards will facilitate
seamless interoperation of heterogeneous
applications. The interoperation of various
applications will need a representation that goes
beyond the current geometry-based representation,
which is inadequate for capturing semantic
information. The primary purpose of this paper is to
discuss a semantically-based information exchange
protocol that will facilitate seamless interoperability

among current and next generation computer-aided
design systems (CAD) and between CAD and other
systems that use product data. Our focus will be on
design/process planning integration during the later
design stages. We will then present in this paper an
approach using a neutral format based on a feature
ontology. Our work is then decomposed in three
main phases that will be further explain in the rest of
this paper, as shown in Figure 1:
• The analysis of the two domains studied: detailed

design and process planning,
• The creation of the ontology and
• The definition and implementation of mapping

rules.
In the next section we provide a brief overview

of design/process planning integration. This will be
followed by a discussion of representative standards
for interoperating design and process planning. The
need for ontological approaches is presented
followed by descriptions of ontologies in the design
and process planning domains and a common
ontology. Rules for mapping from and to the
common ontology are described. Finally, we
illustrate our approach with an example.

ha
l-0

02
66

44
8,

 v
er

si
on

 1
 -

22
 M

ar
 2

00
8

Author manuscript, published in "Concurrent Engineering 15, 2 (2007) 237-249"

http://hal.archives-ouvertes.fr/hal-00266448/fr/
http://hal.archives-ouvertes.fr

 2

2. Design/Process Planning Integration:
An Overview

Engineering a product involves several stages
with considerable iterations, starting with planning
products, generating product specifications,
performing preliminary and detailed design,
developing process plans, building product facilities,
manufacturing product, managing workflow, and
finally marketing and maintaining products [5]. In
this paper we focus on an important aspect of the
above cycle: design and process-planning
integration. We believe that it is important to
integrate design and process planning at various
levels of abstraction, as errors made during early
design stages could have a significant impact on the
overall product quality and costs [5-8].

Engineering design involves mapping a specified
function (or functional specifications) onto a
(description of a) realizable physical structure – the
design artifact. Over the past several decades
considerable research has been done in developing
various design product and process models [9]. We
will not delve into a detailed description of the
design process, much as we feel a need for the
adequate representations for process knowledge. The
reader is referred to [5] for a formal description of a

design process model. At this stage our primary
concern is on the product or artifact representation.
For this we use the NIST CORE product model
presented in [10].

Process planning is an intermediate phase
between design and manufacture [11, 12]. More
precisely, it links these two decisive phases of
product development [13]. It depends on choices
made in design and determines precisely actions that
will be achieved during manufacture (Figure 2).
Different definitions have been given for process
planning [7, 14, 15, 16]. We use the following
definition in this paper: process planning is the
phase that, from information generated during
preliminary design (product geometry for instance),
determines necessary operations and actions to
transform a raw part in a finished or semi-finished
part, the necessary human and material resources to
manufacture the product, as well as the product
development cost evaluation.

A wide variety of manufacturing processes are
available for the actual artifact production. In the
current work we focus on the machining processes
for part production, in particular material cutting
processes. Figure 3 provides a representation of this
process: the cutting tool comes against the surface,
creating a chip that will be removed from the part.

 ;A feature is the super type of: volume feature, transition
;feature and feature pattern.
(forall (?a)
 (implies (feature ?a)
 (or (volume_feature ?a)
 (transition_feature ?a)
 (feature_pattern ?a))))

;A volume feature is the subtype of a feature.
(forall (?a)
 (implies (volume_feature ?a)
 (feature ?a)))
…
;Volume feature attributes are: associated volume and
;cutting section type.
(forall (?a)
 (implies (volume_feature ?a)
 (exists (?b ?c)
 (and (associated_volume ?b)
 (cutting_section_type ?c)
 (optional_attribute ?b ?a)
 (optional_attribute ?c ?a)
 (is_composed_of ?a ?b)
 (is_composed_of ?a ?c)))))
…

;A subtractive volume feature is a volume feature whose
;volume is subtracted from a pre-existing volume
(forall (?a)
 (implies (subtractive_volume_feature ?a)
 (and (volume_feature?a)
 (exists (?b ?c)
 (and (associated_volume ?b)
 (is_composed_of ?a ?b)
 (pre_existing_volume ?c)
 (subtracted ?b ?c))))))

…
;A void is a subtype of a subtractive volume feature
(forall (?a)
 (implies (void ?a)
 (subtractive_volume_feature ?a)))

…

Figure 1: Global process for data exchange using ontologies

Design Process
planning

Manufacture

Elaboration
of the shape

of the
product

Execution of
the

operations to
manufacture
the product

Elaboration
of the

machining
operation

necessary to
manufacture
the product

Design Process
planning

Manufacture

Elaboration
of the shape

of the
product

Execution of
the

operations to
manufacture
the product

Elaboration
of the

machining
operation

necessary to
manufacture
the product

DesignDesign Process
planning
Process
planning

ManufactureManufacture

Elaboration
of the shape

of the
product

Execution of
the

operations to
manufacture
the product

Elaboration
of the

machining
operation

necessary to
manufacture
the product

Figure 2: Role of design, process planning and
manufacturing

Width of the
chip

Thickness of
the chip

Cutting tool

Manufactured
surface

Part

Vc: Cutting speed

Figure 3: Representation of the material cutting
process

ha
l-0

02
66

44
8,

 v
er

si
on

 1
 -

22
 M

ar
 2

00
8

 3

The interactions between design and process
planning occurs at various stages, from conceptual
to detailed design/process planning as shown in
Figure 4 [17].

Current interfaces between design and process
planning are defined during the detailed design
stage. This is primarily achieved through use of
geometric features. However, there is considerable
difference in the methods and terminology used:
features are used to design a product (design by
feature) [8, 13, 18, 19] while in process planning
features are extracted from the product (design
recognition or extraction) [13, 18, 19, 20, 21], and a
consistent feature terminology does not exist for the
two domains. Theses differences are illustrated in
the software used by designers and process planners:
• CAD software, such as Pro-Engineer and

SolidWorks, offer a limited number of features to
users. The objective is here to have a compact set
of parametric features, which can help designers
to intuitively find more suitable features.

• CAPP software, such as PART, utilizes a feature
extraction algorithm and contains a large number
of features. The objective is not here to have a
limited set of significant features but to have a
very large number of features, which can improve
the efficiency of the feature extraction algorithm.
These different viewpoints of designers and

process planners on features makes data exchange a
tedious task. Although features are considered
differently in design and process planning, they
represent a natural link between these two domains.
Hence, features provide a valuable mechanism for
information exchange. Next we review the current
standards in design and process planning
interoperability and discuss extensions needed for
feature-based interoperability.

3. Standards for Interoperability

We illustrate the interoperability issue between
CAD systems by considering a potential information
exchange scenario during the design of the Boeing
777. For Boeing to incorporate Rolls Royce engines

into the design, the data format has to be converted
from Computer Vision’s CADDS (used by Rolls
Royce) to Dassault’s CATIA. Similarly, for Rolls
Royce to understand changes made by Boeing
engineers, the data need to be converted from
CATIA to CADDS. Hence, we need at least 2
translators. For three systems this grows to 6
translators and for n systems we need n(n-1)
translators. Hence, there is a need to design, build,
and maintain n(n-1) translators. A solution to this
problem is to use a neutral format and make all the
CAD applications output this format. Doing so will
reduce the number of translators to 2*n, i.e., for each
CAD system we will need two translators –- one
from the CAD system to the neutral format and the
other from the neutral format to the CAD.

A standard of primary interest to design is ISO
10303, also known informally as STEP [3, 34, 23]
(Standard for the Exchange of Product model data)
and developed by the International Organization for
Standardization Technical Committee 184/
Subcommittee SC4 (ISO TC 184/SC4). Its intention
is to enable the exchange of product model data
between different modules of a product realization
system, or the sharing of that data by different
modules through the use of a common database [24].
The first parts of STEP to achieve International
Standard status were published in 1994, but many
other parts have since been published or are under
development and will eventually be added to the
standard. Recent updates (and other relevant details)
can be found at the following websites:
http://www.nist.gov/sc4, www.tc-184-sc4.org, and
http://www.iso.ch/iso/en/ISOOnline.frontpage.

ISO 10303 (STEP) consists of many parts and
can be viewed as consisting of several layers. The
top layer consists of a set of application protocols or
APs, which address specific product classes and life-
cycle stages (e.g., mechanical, electronic, ships,
automotive, design, process planning). These APs
specify the actual data exchange, and are constructed
from a lower layer set of modules called integrated
resources, which are common for all disciplines. The
language for modeling various STEP entities and
their relationships is called EXPRESS. Other parts
specify standard mechanisms for the actual transfer
of data, the conformance testing methodology, and
various test suites.

The STEP AP most relevant to traditional CAD
systems is called AP 203 and is entitled
“Configuration Controlled 3D Designs of
Mechanical Parts and Assemblies.” This protocol
defines the data exchange of geometric entities and
configuration control of products. AP 203 defines
several levels of implementation –- called
conformance classes –- which deal with increasing
levels of sophistication.

The primary emphasis of STEP AP 203 is on
shape description plus product configuration data.
Facilities have been provided for capturing, in
standard format, the following representations: 2D

Requirement

Function
Functional
 Design

Behavioral
 Specification

Conceptual Design

Process
• Fabrication
• Assembly
• Inspection

Behavior

Form/Structure

Detailed
 Design

Embodiment
Design

Time & Cost

Equipment/Skill

Process
Selection

Resource
 Selection

Time & Cost
Estimation

 - Geometry
- Topology
- Tolerances
- Dimension
- Surface Conditions
- Materials

Preliminary
 Process Planning

- Operation sequences
- Process parameters
- Setup/Fixture
- Accurate time& cost
- Manufacturing resource

Detailed Process
Planning

Form/Structure
& property

Estimated
Time & Cost

Figure 4: Design and process planning interfaces

ha
l-0

02
66

44
8,

 v
er

si
on

 1
 -

22
 M

ar
 2

00
8

 4

drawings, 3D wireframes, surface models, and solid
models. This reflects the state of CAD technology as
it was when the STEP development effort
commenced in the mid-1980s. However, CAD
technology has progressed since that time, and most
major CAD systems now provide facilities for
parametric, variational (including constraints),
and/or feature-based design. In addition many of
these systems have facilities to record design
histories. These systems generate additional
information, beyond the pure shape descriptions
created by older systems, and STEP AP 203
currently provides no means for capturing and
transmitting this additional information. The short
term parametrics effort (which comes under
Working Group 12 of ISO TC 184/SC4) is
addressing this problem.

Considerable research has been performed on
mapping CAD data onto process planning systems.
However, this work has met with limited success,
such as the one reported by [25]. One problem with
the current standards is the lack of integration
between CAD data output and process planning
input. For example, the primary focus of STEP AP
203 is the interoperability between geometry-
centered CAD systems, while the focus of STEP AP
224 (Mechanical product definition for process plans
using machining features) has been on input to
process planning systems with a primary focus on
representation of machine features. The idea of
features has been in vogue for some time and the
literature is abound with definitions of features [15,
19, 26-32]. For example, Shah et al. suggest that
features “are primitive or low level designs with
their attributes, qualifiers and restrictions which
affect functionality and/or manufacturability.
Features can describe form (size and shape),
precision (tolerances and finishing), or materials
(type, grade, properties and treatment), and vary
with product and manufacturing process”.

To achieve truly collaborative design and
engineering, exchange representations of both
design and process information must support
multiple levels of abstraction. To adequately achieve
this we will need a more formal method for
representing features, such as the ontological
approach described in the next section. Our
approach has some similarities to the one presented
in [33], but our overall methodology is different.

4. Ontological Approach to
Interoperability

In all types of communication, the ability to
share information is often hindered because the
meaning of information can be drastically affected
by the context in which it is viewed and interpreted.
This is especially true in manufacturing, because of
the growing complexity of manufacturing

information and the increasing need to exchange this
information among various software applications.
Different representations of the same information
may be based on different assumptions about the
world, and use differing concepts and terminology --
and conversely, the same terms may be used in
different contexts to mean different things. Often,
the loosely defined natural-language definitions
associated with the terms will be too ambiguous to
make the differences evident, or will not provide
enough information to resolve the differences.

To address these challenges, various groups
within industry, academia, and government have
been developing sharable and reusable models
known as ontologies [3]. All ontologies consist of a
vocabulary along with some specification of the
meaning or semantics of the terminology within the
vocabulary. In doing so, ontologies support
interoperability by providing a common vocabulary
with a shared semantics. Rather than develop point-
to-point translators for every pair of applications,
one simply needs to write one translator between the
application's terminology and the common ontology.
Similarly, ontologies support reusability by
providing a shared understanding of generic
concepts that span across multiple projects, tasks
and environments.

The various ontologies that have been developed
can be distinguished by their degree of formality in
the specification of meaning. With informal
ontologies, the definitions are expressed loosely in
natural language. Semi-formal ontologies, such as
taxonomies, provide weak constraints for the
interpretation of the terminology. Formal ontologies
use languages based on mathematical logic. Informal
and semi-formal ontologies can serve as a
framework for shared understanding among people,
but they are often insufficient to support
interoperability, since any ambiguity can lead to
inconsistent interpretations and hence hinder
integration.

Another source of semantic heterogeneity lies in
the languages used to represent the ontologies. There
have been several efforts within academia and
industry to develop common languages that can be
used as the basis for ontologies to support semantic
integration; the most expressive is the Common
Logic project, which combines the Knowledge
Interchange Format [34-36] and Conceptual Graphs
(CG) [37] languages. Common Logic includes a
core language that has the expressiveness of first-
order logic; its syntax and semantics are those of
traditional first-order logic. Some other languages
has been based on Logic, such as PSL [38]. Most
recently, this has been extended to include
extensions that allow sorted formulae for the
specification of class hierarchies, and the
specification of the meta theory of KIF within the
language itself.

ha
l-0

02
66

44
8,

 v
er

si
on

 1
 -

22
 M

ar
 2

00
8

 5

Our objective in this paper consists in developing
and implementing an approach for data exchange
between designers and process planners. To realize
this, we decided to develop a feature ontology. This
ontology will represent all the common knowledge
between designers and process planners as well as
specific knowledge of both experts. We will use this
ontology as depicted as follow: a designer creates an
artifact shape model using a CAD software (such as
Pro/Engineer); this model is then transform, using
mapping rules (see Section 8), into instances of the
shared ontology. These instances of the shared
ontology are then transform, using other mapping
rules, into a representation interpretable by CAPP
software (such as Pro/Engineer). Features are then
used not to realize features extraction or design by
features: features represent for us a common
knowledge that will be the base of our shared
ontology for date exchange. In the next parts of this
paper, we will present the design specific parts, the
process planning specific parts and the design and
process planning common parts of our ontology. We
will continue with the description of the mapping
rules used to translate data and we will finished by
an example.

5. Design Feature Ontology

Our ultimate goal is to develop a comprehensive
feature model that can be used through the entire
design life cycle. However, for our prototype we
restricted the NIST CPM’s extensions to the

information generated by commercial CAD systems.
To identify these concepts, we first performed an
extensive analysis to understand various designers’
needs. This analysis phase involved:
• The extraction of designer know-how--which is

implicit--in order to formalize designer’s
knowledge; and

• The analysis of different CAD software such as
Pro-Engineer and SolidWorks: we used them to
create various parts in order to better understand
the design process.
Based on this analysis we concluded that the

NIST CPM had most of the necessary classes to
represent detailed design data. We added a few
classes in order to increase the coverage to CAD
software, such as: the datum coordinate system in
which the artifact is defined, the dimensions
associated to an artifact, the precision of the
dimensions of an artifact, the different versions of an
artifact and the constraints associated to each
feature. Figure 5 represents these concepts.

We also defined different kind of constraints as
shown in Figure 6. The initial categories that we
considered are position and orientation constraints,
which can be further classified into attachment and
geometric constraints. Attachment constraints
specify how a feature instance is attached to the
global model by coupling some of the feature faces
with the pre-existing faces. Geometric constraints
specify geometric relations such as parallelism of
two faces or distance between two faces. Validity
constraints correspond to another constraint category
defined in our ontology. These validity constraints
can be further classified into:
• dimension constraints, which specify the

authorized set of values for each feature
parameter. e.g., radius parameter of a crossing
hole can be limited to values between 1 and 10
millimeters;

• algebraic constraints, which are used when feature
shapes are geometrically constrained with explicit
relations (these relations can be simple equalities
between two parameters or, in general, algebraic
expressions implying two or more of two
parameters or constants);

• boundary constraints, which specify if feature
faces is on the boundary or not on the boundary of

Artifact

Feature
Surface

Legend

Association
Class Hierarchy

Aggregation

Design specific
classes

Feature
Representation

Feature
Element

Tolerance

Units

Datum Coordinate
System

Constraint

Precision

Artifact
version

DimensionArtifactArtifactArtifact

FeatureFeatureFeature
SurfaceSurface

Legend

Association
Class Hierarchy

Aggregation

Design specific
classes

Legend

Association
Class Hierarchy

Aggregation

Design specific
classes

Feature
Representation

Feature
Representation

Feature
Representation

Feature
Element
Feature
Element
Feature
Element

ToleranceTolerance

UnitsUnits

Datum Coordinate
System

Datum Coordinate
System

ConstraintConstraint

PrecisionPrecision

Artifact
version
Artifact
version

DimensionDimension

Figure 5: Design specific classes

Constraint

Position and
orientation
constaint

Validity
constraint

Attach constraint

Geometric constraint

Dimension constraint

Algebric constraint

Boundary constraint

Feature
interaction

Splitting

Deconnection

Boundary
clearance

Volume
clearance Closure

Absorbtion

Geometric

Transmutation

Topologic

Technologic
constraint

Economic
constraint

Opération
constraint

Contrainte de
bavure

ConstraintConstraint

Position and
orientation
constaint

Position and
orientation
constaint

Validity
constraint
Validity

constraint

Attach constraintAttach constraint

Geometric constraintGeometric constraint

Dimension constraintDimension constraint

Algebric constraintAlgebric constraint

Boundary constraintBoundary constraint

Feature
interaction

Feature
interaction

SplittingSplitting

DeconnectionDeconnection

Boundary
clearance
Boundary
clearance

Volume
clearance
Volume

clearance ClosureClosure

AbsorbtionAbsorbtion

GeometricGeometric

TransmutationTransmutation

TopologicTopologic

Technologic
constraint

Technologic
constraint

Economic
constraint
Economic
constraint

Opération
constraint
Opération
constraint

Contrainte de
bavure

Contrainte de
bavure

Figure 6: Constraint classification

ha
l-0

02
66

44
8,

 v
er

si
on

 1
 -

22
 M

ar
 2

00
8

 6

the conceived object; and
• feature interaction constraints, which are used to

indicate that a particular type of interaction is or is
not allowed for a feature instance.
The above extensions suffice to illustrate our

approach. Additional classes will be needed for a
wider coverage. KIF representations of a
representative set are shown in Figure 7.

6. Process Planning Ontology

Our feature ontology is also representative of the
process planning viewpoint. We followed a similar
approach used for design: we asked process planners
to describe how they work, what kind of information
they need, what are the different phases of their
work, etc. We also studied a CAPP software: PART.
This analysis of process planning turned out to be a
more difficult task than obtaining the design
features. While designers have a consistent notion of
what design is, process planners seem to be in less
agreement on the terminology in their domain.
Based on our discussions, we decided to use the
concepts presented in Figure 8.

In this figure, an artifact is associated with a
manufacturing model. This model is used to create a

process plan. The input of this process plan is a raw
part and the output is a semi-finished or finished
part. A process plan identifies the machining
operations that are necessary to manufacture an
artifact. Hence, a process plan is composed of
machining setups, which contains all the machining
operations that are realized with the same machine
and without changing the attachments. For each
machining setup, there is a set of machining
operations. Each machining operation is then
realized with the same machine and attachments.
Each machining operation is composed of a set of
machining sequences, which corresponds to a
transformation of a part that is achieved with the
help of a material removal tool moving according to
a tool path. Finally, a machining operation modifies
a surface in accordance to a required finish: raw,
semi-finish, finish or super-finish. KIF
representations of a representative set are shown in
Figure 9.

7. Common Feature Ontology

The last part of our ontology corresponds to the
common concepts between design and process
planning and is composed of numerous classes and
relationships. We base our ontology on the NIST
Core Product Model (CPM). We used this model in
order to take into account general concepts, initially
present in this model, and we added more specific
concepts allowing feature representation. (Figure 10)
represents the main classes and relationships
composing the Core Product Model and its
extensions in this work, where the extensions are
shown as darkened boxes (ideally, the NIST CPM
should be a package in UML and our extensions
should be in a separate package). The descriptions of
key entities in the NIST CPM are as follows (taken
from [10]).

An Artifact represents a distinct entity in a
design, whether that entity is a component, product,
subassembly or assembly. The Artifact ’s attributes
refer to the Specification responsible for the Artifact
and the Form, Function, and Behavior comprising
the Artifact. The Function represents what the

 ;A constraint is the super type of: technologic constraint,
;economic constraint, validity constraint and position and
;orientation constraint.
(forall (?a)
 (implies (constraint ?a)
 (or (technologic_constraint ?a)
 (economic_constraint ?a)
 (validity_constraint ?a)
 (position_orientation_constraint ?a))))

;A technologic constraint is the subtype of a constraint.
(forall (?a)
 (implies (technologic_constraint ?a)
 (constraint ?a)))

;A validity constraint is the subtype of a constraint.
(forall (?a)
 (implies (validity_constraint ?a)
 (constraint ?a)))
…

Figure 7: KIF statements for constraint
classification

Legend

Association

Class Hierarchy

Aggregation

Process planning
specific classes

ArtifactManufacturing
model

Rough

Semi finishing

Finitshing

Super finishing

Machine Attachment Tool Tool path

Finishing

Sub-sequence

Sequence

Process plan

Machining
setup

Machining
opération

Sequence of
machining

Finish part

Raw part

Semi-finish part
Legend

Association

Class Hierarchy

Aggregation

Process planning
specific classes

Legend

Association

Class Hierarchy

Aggregation

Process planning
specific classes

ArtifactArtifactArtifactManufacturing
model

Manufacturing
model

RoughRough

Semi finishingSemi finishing

FinitshingFinitshing

Super finishingSuper finishing

MachineMachine AttachmentAttachment ToolTool Tool pathTool path

FinishingFinishing

Sub-sequenceSub-sequence

SequenceSequenceSequence

Process planProcess planProcess plan

Machining
setup

Machining
setup

Machining
setup

Machining
opération
Machining
opération
Machining
opération

Sequence of
machining

Sequence of
machining

Sequence of
machining

Finish partFinish part

Raw partRaw part

Semi-finish partSemi-finish part

Figure 8: Process planning specific classes

 ;A manufacturing model uses a process plan
(defrelation use (?a ?b):=

(and (manufacturing_model ?a)
(process_plan ?b)))

;Attributes of a process plan are: a set of machining setup,
; an associated manufacturing model and specifications
(forall (?a)
(implies (process_plan ?a)

 (exists (?l ?b ?c)
 (and (associated_manufacturing_model ?b)

 (specification ?c)
 (machining_setup ?l)

 (is_composed_of ?a ?b)
 (is_composed_of ?a ?c)
 (is_composed_of ?a ?l)))))
…

Figure 9: KIF statements for feature
decomposition

ha
l-0

02
66

44
8,

 v
er

si
on

 1
 -

22
 M

ar
 2

00
8

 7

Artifact is supposed to do. The Artifact satisfies the
engineering requirements largely through its
Functions. The term function is often used
synonymously with the term intended behavior. The
Form of the Artifact can be viewed as the proposed
design solution for the design problem specified by
the Functions. More precisely, the physical
characteristics of an Artifact are represented in
terms of its Geometry and Material properties.

Another important class of the Core Product
Model is the Feature. An Artifact is composed of a
set of features, where a feature is a subset of the
form of an object that has some function assigned to
it. We can have several types of features: analysis
features, design features, manufacturing features,
interface or port features, etc., Compound features
can be generated from primitive features. The notion
of a feature is further elaborated in the work
presented here.

 We modified the NIST Core Product Model
(CPM) by adding some concepts that are common to
design and process planning, are both necessary for
designers and process planners, and are considered
in CAD and CAPP software. Examples of these
include:
• The surfaces composing any feature;

• The tolerances associated to any feature (such as
the perpendicularity between two surfaces) (a
more complete treatment of tolerances and
assemblies is provided in [39]); and

• The units used to represent any artifact.
Our main objective is to find a common feature

representation between design and process planning.
To do so, we extended NIST CPM to address the
following:
• The way each feature is represented, such as a B-

Rep representation, a CSG representation, a swept
representation, etc. (Feature Representation
concept); and

• The elements composing each feature, such as a
bottom side, an intermediary face, etc. (Feature
Element concept).
We also characterized a complete feature

decomposition which is based on the feature
categories proposed in the part 48 of STEP [40].
Figure 11 illustrates this decomposition. Features are
classified into:
• Volume features, which are viewed as a volume

added to or subtracted from pre-existing volume;
• Transition features, which are viewed as

separating or blending two or more surface
elements; and

• Pattern features, which are viewed as a consisting
of a number of identical sub features arranged in a
mathematical pattern.
Volume features can be subtractive or additive,

and transition feature can be corner or flat
transitions. A more detailed description of this
decomposition can be seen at [40, 41].
The KIF version of representative entities is shown
below (Figure 12).

8. Mapping Rules For Case Study

Once the feature ontology in various domains is
defined, the next step is to define the mapping rules
that will transform specific files onto instances of
our common ontology. For our case study, we
choose the following software: Pro-Engineer, which
is used by CAD experts, and PART, which is used

Legend

Association

Class Hierarchy

Aggregation

Process planning
specific classes

Specification Behavior

Transfer
Function

Common Core
Object

Core
entity

Geometry

Material

Function

Flow

Form

Artifact

Feature

Core
Property

Surface

Feature
Representation

Tolerance

Units

Feature
Element

Legend

Association

Class Hierarchy

Aggregation

Process planning
specific classes

Legend

Association

Class Hierarchy

Aggregation

Process planning
specific classes

SpecificationSpecification BehaviorBehavior

Transfer
Function
Transfer
Function

Common Core
Object

Common Core
Object

Core
entity
Core
entity
Core
entity

GeometryGeometryGeometry

MaterialMaterialMaterial

FunctionFunctionFunction

FlowFlowFlow

FormFormFormForm

ArtifactArtifactArtifact

FeatureFeatureFeature

Core
Property

Core
Property

Core
Property

SurfaceSurface

Feature
Representation

Feature
Representation

Feature
Representation

ToleranceToleranceTolerance

UnitsUnits

Feature
Element
Feature
Element
Feature
Element

Figure 10: Main class diagram of the Core Product
Model and extensions

 Feature

Volume
feature

Transition
feature

Pattern
feature

Edge
transition

Corner
transition

Flat edge
transition

Circular
edge

transition

Flat corner
transition

Shperical
corner

transition

Array
feature
pattern

Circular
feature
pattern

Other
feature
pattern

1 d imensional
array pattern

2 d imensional
array pattern

3 d imensional
array pattern

Subtractive
volume
feature

Additive
volume
feature

Depression

Passage

Void

Protrusion

Connector

Stanalone
volume

FeatureFeature

Volume
feature
Volume
feature

Transition
feature

Transition
feature

Pattern
feature
Pattern
feature

Edge
transition

Edge
transition

Corner
transition
Corner

transition

Flat edge
transition
Flat edge
transition

Circular
edge

transition

Circular
edge

transition

Flat corner
transition

Flat corner
transition

Shperical
corner

transition

Shperical
corner

transition

Array
feature
pattern

Array
feature
pattern

Circular
feature
pattern

Circular
feature
pattern

Other
feature
pattern

Other
feature
pattern

1 d imensional
array pattern
1 d imensional
array pattern

2 d imensional
array pattern
2 d imensional
array pattern

3 d imensional
array pattern
3 d imensional
array pattern

Subtractive
volume
feature

Subtractive
volume
feature

Additive
volume
feature

Additive
volume
feature

DepressionDepression

PassagePassage

VoidVoid

ProtrusionProtrusion

ConnectorConnector

Stanalone
volume

Stanalone
volume

Figure 11: Feature decomposition

ha
l-0

02
66

44
8,

 v
er

si
on

 1
 -

22
 M

ar
 2

00
8

 8

by CAPP experts. The methodology that we
followed is described in Figure 13.

We first analyzed the existing export and import
formats of Pro-Engineer and PART. Then, we
selected one format for each of them: a proprietary
format for Pro-Engineer, Neutral File Format, and
ACIS format for PART. Once the formats have been
chosen, we analyzed the representation of different
artifacts in the two formats. The objective is to
extract all the important concepts represented in
each file in order to correlate them with the domain
ontology entities. Once this is done our approach
utilizes two algorithms: one to translate a file
generated by a CAD software into a set of instances
of the feature ontology and one to translate this
generated file into a file that can be interpreted and
processed by a CAPP software. The inputs to the
first algorithm are:

• The file containing the entire description of the
ontology, which is expressed in KIF, and

• The file generated by the CAD software
(Pro/Engineer in this case), which represents the
geometry and topology of the part that has to be
manufactured.

• The inputs to the second algorithm are:
• The file containing the entire description of the

ontology, which is the common ontology
expressed in KIF, and

• The file generated by the first algorithm.
As we previously stated, the only assumption

made during the elaboration of the ontology and the
mapping rules was that we only considered parts that
do not have any assembly; solving this problem for
simple machining parts containing only features by
itself is a difficult task. Taking into account more
complex parts containing for example assemblies

 ;A feature is the super type of: volume feature, transition
;feature and feature pattern.
(forall (?a)
 (implies (feature ?a)
 (or (volume_feature ?a)
 (transition_feature ?a)
 (feature_pattern ?a))))

;A volume feature is the subtype of a feature.
(forall (?a)
 (implies (volume_feature ?a)
 (feature ?a)))
…
;Volume feature attributes are: associated volume and
;cutting section type.
(forall (?a)
 (implies (volume_feature ?a)
 (exists (?b ?c)
 (and (associated_volume ?b)
 (cutting_section_type ?c)
 (optional_attribute ?b ?a)
 (optional_attribute ?c ?a)
 (is_composed_of ?a ?b)
 (is_composed_of ?a ?c)))))
…

;A subtractive volume feature is a volume feature whose
;volume is subtracted from a pre-existing volume
(forall (?a)
 (implies (subtractive_volume_feature ?a)
 (and (volume_feature?a)
 (exists (?b ?c)
 (and (associated_volume ?b)
 (is_composed_of ?a ?b)
 (pre_existing_volume ?c)
 (subtracted ?b ?c))))))

…
;A void is a subtype of a subtractive volume feature
(forall (?a)
 (implies (void ?a)
 (subtractive_volume_feature ?a)))

…

Figure 12: KIF statements for feature decomposition

Choosing of file

formats

Representing mapping

rules graphically

Format Format Format Format NeutreNeutreNeutreNeutre Format Format Format Format OntologieOntologieOntologieOntologie

Surface (plane)

id
uv_min [2]
uv_max [2]

xyz_min [3]
xyz_max [3]

surface
plane

surface

point_min
point_max
orientation

liste_de_boucles

normale

identificateur
système_de_coord_associé

orient

système de
coordonnées

loops [nb]
edges_ids[nb]

loops [2]
edges_ids

[nb]...

e1 [3]
e2 [3]
e3 [3]

origin [3]

axe1
axe2
axe3
origine

Implementing

mapping rules
For (int i=0; i<j, i++)

creatingSurface(

…)

…

creatingEdges (…)

Analyzing

concepts

Pro/Engineer

Features

Surface

Edges

PART

body

face

edge

Choosing of file

formats

Choosing of file

formats

Representing mapping

rules graphically

Format Format Format Format NeutreNeutreNeutreNeutre Format Format Format Format OntologieOntologieOntologieOntologie

Surface (plane)

id
uv_min [2]
uv_max [2]

xyz_min [3]
xyz_max [3]

surface
plane

surface

point_min
point_max
orientation

liste_de_boucles

normale

identificateur
système_de_coord_associé

orient

système de
coordonnées

loops [nb]
edges_ids[nb]

loops [2]
edges_ids

[nb]...

e1 [3]
e2 [3]
e3 [3]

origin [3]

axe1
axe2
axe3
origine

Format Format Format Format NeutreNeutreNeutreNeutre Format Format Format Format OntologieOntologieOntologieOntologie

Surface (plane)

id
uv_min [2]
uv_max [2]

xyz_min [3]
xyz_max [3]

surface
plane

surface

point_min
point_max
orientation

liste_de_boucles

normale

identificateur
système_de_coord_associé

orient

système de
coordonnées

loops [nb]
edges_ids[nb]

loops [2]
edges_ids

[nb]...

e1 [3]
e2 [3]
e3 [3]

origin [3]

axe1
axe2
axe3
origine

Implementing

mapping rules
For (int i=0; i<j, i++)

creatingSurface(

…)

…

creatingEdges (…)

Implementing

mapping rules
For (int i=0; i<j, i++)

creatingSurface(

…)

…

creatingEdges (…)

Analyzing

concepts

Pro/Engineer

Features

Surface

Edges

PART

body

face

edge

Analyzing

concepts

Pro/Engineer

Features

Surface

Edges

PART

body

face

edge

Figure 13: Methodology for the elaboration of the validation prototype

ha
l-0

02
66

44
8,

 v
er

si
on

 1
 -

22
 M

ar
 2

00
8

 9

would implies to modify both the ontology and the
mapping rules. If the two algorithms that we
developed do not provide a “correct mapping” then:
• The mapping rules implemented in the algorithms

are not correct; and/or
• The ontology is not correct, in which case, we

have to modify the ontology and then modify the
mapping rules in order to take into account these
changes.
For a simple artifact such as a box with one hole

(Figure 14), the file generated by Pro-Engineer is
hierarchically structured: it contains the dimensions
characterizing the artifact, the features used to build
it, the surfaces determining the features and the
edges composing the surfaces. PART files are totally
different: information is stored with no specific
order, and data contained in such files relates to
geometric and topologic information. This kind of
file format doesn’t explicitly provide information
about features composing an artifact.

Using different instances of Pro-Engineer and
PART files, we extracted a list of entities or
concepts and their attributes in these files. Example
concepts are: plane surface, cylindrical surface,
straight curve, linear curve, edge, point, vertex, etc.
Once this analysis is done, we elaborated the
mapping rules between a Pro-Engineer file and a file
containing instances of our ontology and between
this generated file and a PART file. The objective of
these rules is to identify in our domain ontologies
the entities that are equivalent to the concepts that
we identified in Pro-Engineer and PART files.
Initially we expressed these mapping rules
graphically. In this graphical representation, we
display the relationships between the attributes of
the entities represented in Pro-Engineer or PART
file and attributes of the entities of our ontology.
Figure 15 shows the graphical representation of one
such mapping rule. This mapping rule shows the
correspondence between a plane surface expressed

in a neutral file generated by Pro-Engineer and the
equivalent concepts in our ontology.

Once this step is finished, we obtained two sets
of mapping rules. These mapping rules are
expressed graphically. The next step consists in
implementing these rules in order to be able to
translate a CAD file into a CAPP file via our
ontology. As we have previously stated, our method
involves starting from a file generated by
Pro/Engineer, applying a first set of mapping rules in
order to generate a neutral file, and applying our
second set of mapping rules on this neutral file in
order to obtain a file interpretable by PART. A
description of our mapping algorithm is shown in
Figure 16.

Starting from a CAD file generated by
Pro/Engineer, we create all the features. For each
feature, we have to extract from our ontology all the
attributes that we have identified for a feature (for
example the list of surfaces, the list of dimensions,
etc.). For each of these attributes we search, still in
our ontology, the nature of the attribute, which can
be either simple (i.e., integer, string, boolean) or

 Pro/Engineer file

#- HOST
#- VERS 0 0
…
1 dimensions [8]
2 dimensions
3 name d0
…
1 features [5]
2 features
…
2 features
Protrusion
3 id 47
3 user_name NULL
…
1 surfaces [8]
2 surfaces
3 id 50
3 uv_min [2]
…
1 edges [18]
2 edges
3 id 51
…

PART file

700 0 1 0

24 PART 6.1.000 07-JUN-2002 13 …

-0 body $-1 -1 $-1 $1 $-1 $2 #
-1 lump $-1 -1 $-1 $-1 $2 $0 #
-2 shell $-1 -1 $-1 $-1 $-1 $3 $-1 $1 #
-3 face $-1 -1 $-1 $4 $5 $2 $-1 $6 reversed single #

-4 face $-1 -1 $-1 $7 $8 $2 $-1 $9 forward single #

-5 loop $-1 -1 $-1 $10 $11 $3 #

-6 cone-surface $-1 -1 $-1 -52.5 -25 129 0 0 1 -13 011 0 1 I I 0 1 13 forward I I I I #
-7 face $-1 -1 $-1 $12 $13 $2 $-1 $14 reversed single #
-8 loop $-1 -1 $-1 $15 $16 $4 #

Pro/Engineer file

#- HOST
#- VERS 0 0
…
1 dimensions [8]
2 dimensions
3 name d0
…
1 features [5]
2 features
…
2 features
Protrusion
3 id 47
3 user_name NULL
…
1 surfaces [8]
2 surfaces
3 id 50
3 uv_min [2]
…
1 edges [18]
2 edges
3 id 51
…

PART file

700 0 1 0

24 PART 6.1.000 07-JUN-2002 13 …

-0 body $-1 -1 $-1 $1 $-1 $2 #
-1 lump $-1 -1 $-1 $-1 $2 $0 #
-2 shell $-1 -1 $-1 $-1 $-1 $3 $-1 $1 #
-3 face $-1 -1 $-1 $4 $5 $2 $-1 $6 reversed single #

-4 face $-1 -1 $-1 $7 $8 $2 $-1 $9 forward single #

-5 loop $-1 -1 $-1 $10 $11 $3 #

-6 cone-surface $-1 -1 $-1 -52.5 -25 129 0 0 1 -13 011 0 1 I I 0 1 13 forward I I I I #
-7 face $-1 -1 $-1 $12 $13 $2 $-1 $14 reversed single #
-8 loop $-1 -1 $-1 $15 $16 $4 #

Figure 14: Data declaration in Pro-Engineer and PART files for a simple
artifact

 Neutral format Ontology format

Surface (plane)

id

uv_min [2]

uv_max [2]

xyz_min [3]

xyz_max [3]

plane surface surface

point_min

point_max

orientation

loop_list

normal

identificateur

associated_coordinate_sy

stem

orient

coordinate system

loops [nb]
edges_ids[nb]

surface_type 34
surface (plane)

loops [2]

edges_ids [nb]

...

e1 [3]

e2 [3]

e3 [3]

origin [3]

axis1

axis2

axis3

origin
Figure 15: Correspondence for plane surface
between a Neutral file and our ontology

ha
l-0

02
66

44
8,

 v
er

si
on

 1
 -

22
 M

ar
 2

00
8

 10

complex (i.e., the attribute is composed of sub-
attributes). If the attribute is a simple one, we extract
in the initial file the associated value and we add a
new instance in the neutral file. If the attribute is
more complex, we consider each sub-attribute until
all concepts appearing in the initial file have been
instantiated. The advantage of this algorithm is that
if we decide to change the attributes of one of the
concepts of the ontology –for example if we delete
one attribute of the concept feature- the algorithm
will not have to be change because the number of
attributes of a concept is calculated each time the
algorithm is running.

We also implemented a user interface for our
prototype. This interface allows us to visualize the
different artifacts that we considered, the Pro-

Engineer file, the file generated by our prototype and
containing instances of our ontology, the file in
which the ontology is coded and also a graphical
representation of the artifacts that we considered.
Figure 17 shows a typical screen of our prototype,
which is implemented at University Claude Bernard
of Lyon, FRANCE.

We tested our methodology and our prototype
with different examples. For our initial prototype we
considered only simple parts (see Figure 18), with
great success. Our plans are to extend this work for
complex artifacts (e.g., assemblies).

The result of our approach is shown in the Figure
19.

 Create a feature instance

For each feature attribute do

Create an instance of the attribute

For each sub- attribute do

…

If the attribute is a simple one (integer, string, etc.)

Else find its sub-attributes

Find all feature attributes

Feature
ontology

Find the type of the attribute

Find its value in the initial file (Pro-Engineer or PART file)

Pro-Engineer
or PART file

Figure 16: General algorithm for data exchange

Figure 17: Screen of the prototype to visualize a file

ha
l-0

02
66

44
8,

 v
er

si
on

 1
 -

22
 M

ar
 2

00
8

 11

Summary

In this paper we have described an ontological
approach to integrating computer-aided design
(CAD) and computer-aided process planning
(CAPP). Two commercial software applications
were used to demonstrate our approach. The
approach involved the development of a shared
ontology and domain specific ontologies in the KIF
(Knowledge Interchange Format) language. Domain
specific ontologies--which were feature-based--were
developed after a detailed analysis of the CAD and
the CAPP software. Mapping between the domain
ontologies and the shared ontology was achieved by
several mapping rules. The approach was validated

by using a variety of parts.

Disclaimer

No approval or endorsement of any commercial
product by the National Institute of Standards and
Technology or by University Claude Bernard of
Lyon is intended or implied. Certain commercial
equipments, instruments, or materials are identified
in this report in order to facilitate better
understanding. Such identification does not imply
recommendations or endorsement by the National
Institute of Standards and Technology or by
University Bernard of Lyon, nor does it imply the
materials or equipment identified are necessarily the
best available for the purpose.

Bibliography

1. Eynard, B., Liénard, S., Charles, S. and
Odinot, A. (2005). Web-based Collaborative
Engineering Support System: Applications in
Mechanical Design and Structural Analysis, CERA
Journal, Volume 13, Number 2, June 2005.
2. Jia, H.Z., Fuh, J.Y.H., Nee A.Y.C. and Zhang,
Y.F. (2002). Web-based Multi-functional
Scheduling System for a Distributed

Figure 18: Some part examples

 Pro/Engineer file

#- HOST
#- VERS 0 0
…
1 dimensions [8]
2 dimensions
3 name d0
…
1 features [5]
2 features
…
2 features
Protrusion
3 id 47
3 user_name NULL
…
1 surfaces [8]
2 surfaces
3 id 50
3 uv_min [2]
…
1 edges [18]
2 edges
3 id 51
…

File containing ontology instances

(and (string nameproduct1)
 (= nameproduct1 "Cube_With_One_Hole"))

(and (protrusion protrusion1)
 (feature protrusion1)
 (associated_constraint_list CubeConstraints1)
 (associated_tolerances_list CubeTolerances1)
 …
 (surfaces_list Surfaces1)
 (dimensions_list Dimensions1)
 (is_composed_of protuberance1 CubeConstraints1)
 (is_composed_of protuberance1 CubeTolerances 1)
 …
 (is_composed_of protuberance1 Surfaces1)
 (is_composed_of protuberance1 Dimensions1))

File used in PART

700 0 1 0
24 PART 6.1.000 07-JUN-2002 13 …
-0 body $-1 -1 $-1 $1 $-1 $2 #
-1 lump $-1 -1 $-1 $-1 $2 $0 #
-2 shell $-1 -1 $-1 $-1 $-1 $3 $-1 $1 #
-3 face $-1 -1 $-1 $4 $5 $2 $ -1 $6 reversed single #
-4 face $-1 -1 $-1 $7 $8 $2 $-1 $9 forward single #
-5 loop $-1 -1 $-1 $10 $11 $3 #
-6 cone-surface $-1 -1 $-1 -52.5 -25 129 0 0 1 -13 011 0 1 I I 0 1 13 forward I I I I #
-7 face $-1 -1 $-1 $12 $13 $2 $-1 $14 reversed single #
-8 loop $-1 -1 $-1 $15 $16 $4 #

Mapping rules

Mapping rules

Figure 19: Examples of the different generated files

ha
l-0

02
66

44
8,

 v
er

si
on

 1
 -

22
 M

ar
 2

00
8

 12

Manufacturing Environment, CERA Journal,
Volume 10, Number 1, March 2002.
3. Han, S., Choi, Y. Yoo, S. and Park, N.
(2002). Collaborative Engineering Design Based
on an Intelligent STEP Database, CERA Journal,
Volume 10, Nuber 3, September 2002.
4. Huang, G. Q. and Mak, K. L. (2002). Agent-
based Collaboration Between Distributed Web
Applications: Case Study on ‘‘Collaborative
Design for X’’ Using CyberCO, CERA Journal,
Volume 10, Number 4, December 2002.
5. Sriram, R.D. (2002). Distributed and
integrated collaborative engineering design.
Sarven Publishers.
6. Baker, B.A., Fish, R.D. and Cohen E. (2000).
Using a multiple concurrent design views
interface to enhance design complexity
management. ASME Design Engineering
Technical Conferences (DETC), Baltimore,
Maryland, USA.
7. Feng, S.C. and Song E.Y. (2002). Preliminary
Design and Manufacturing Planning Integration
Using Intelligent Agents. Proceedings of the
Seventh International Conference on CSCW in
Design, Rio de Janeiro, Brazil.
8. Jan de Kraker, K. (1998). Feature
Conversion for Concurrent Enginnering, in
Computer Science, Delft University of
Technology: Delft, The Netherlands.
9. Dym, C. (1994). Engineering Design: A
Synthesis of Views, edition C.U. Press.
10. Fenves, S.J. (2001). A core product model
for representing design information, National
Institute of Standards and Technologies (NIST):
Gaithersburg, MD, USA.
11. Algeo, M.E.A., Feng, S.C. and Ray S.R.
(1994). A State-of-the-Art Survey on Product
Design and Process Planning Integration
Mechanisms, National Institute of Standards and
Technology (NIST).
12. Ball, M., Baras, J., Lin, E., Minis, I., Nau, D.
and Karne, R. (1998). Integrated Product and
Process Design Tool for Microwave Modules. in
Integrating Product Design and Production:
Designing for Time-to-Market, NSF Design and
Manufaccturing Grantees Conference.
13. Han, J.H. and Requicha A.A.G. (1995).
Integration of feature based design and feature
recognition, Proceedings of ASME 15th
International Conference in Engineering
Conference, Boston, MA, USA.
14. Kramer, T.R., (1987). Process plan
expression, generation, and enhancement for the
vertical workstation milling machine in the
automated manufacturing research facility at the
National Bureau of Standards, National Bureau of
Standards: Gaithersburg, MD, USA.
15. Regli, W.C. and Pratt M. (1996). What are
Feature Interactions?, Proceedings the 1996
ASME Design Engineering Technical Conference
and Computers in Engineering Conference,
Irvine, California, USA.
16. Houten, F.J.A.M.v., Erve, A.H.v.t. and K.
H.J.J. (1989), PART a Feature Based CAPP
System, 21st CIRP International Seminar on
Manufacturing Systems, Stockholm, Sweden.
17. Feng, S.C. and Song E.Y. (2000).
Information Modeling on Conceptual Design

Integrated with Process Planning. in Proceedings
of Symposia for Design For Manufacturability, ,
the 2000 International Mechanical Engineering
Congress and Exposition (IMECE). 2000.
Orlando, FL, USA.
18. Han, J.-h., Pratt, M. and Regli, W.C. (2000).
Manufacturing Feature Recognition from Solid
Models: A Status Report, Transactions on
Robotics and Automation, Volume 16, Issue 6,
p. 782-796.
19. Han, J.H. (1996). Survey of Feature
Research, Department of Computer Science and
Institute for Robotics and Intelligent Systems,
University of Southern California, Los Angeles,
CA, USA.
20. De Martino, T., Falcidieno, B. and Hassinger,
S. (1998). Design and engineering process
integration through a multiple view intermediate
modeller in a distributed object-oriented system
environment, Computer-Aided Design, Volume
30, Issue 6, p. 437-452.
21. De Martino, T., Falcidieno, B., Giannini, F.,
Hassinger, S. and Ovtcharova J. (1994). Feature-
based modelling by integrating design and
recognition aproaches, Computer-Aided Design,
Volume 26, Issue 8, p. 646-653.
22. Junhwan, K. and Soonhung, H. (2004).
Manipulating Geometry in a STEP DB from
Commercial CAD Systems, CERA Journal, Volume
12, Number 1, March 2004.
23. Stephen, C.F.C., Tharam, D. and Vincent
T.Y.N. (2003). Exchanging STEP Data Through
XML-based Mediators, CERA Journal, Volume 11,
Number 1, March 2003.
24. Balakrishna, A., Suresh Babu, R., Nageswara
Rao, D., Ranga Raju, D. and Kolli, S. (2006).
Integration of CAD/CAM/CAE in Product
Development System Using STEP/XML, CERA
Journal, Volume 14, Number 2, June 2006.
25. Dereli, T. and Filiz, H. (2002) A note on the
use of STEP for interfacing design to process
planning, Computer-Aided Design, Volume 34, p.
1075-1085.
26. Bidarra, R. and Bronsvoort, W.F. (2000).
Semantic feature modelling, Computer-Aided
Design, Volume 32, p. 201-225.
27. Bronsvoort, W.F., Bidarra, R. and Noort, A.
(2001). Semantic and multiple-view feature
modelling: towards more meaningful product
modelling, Geometric Modelling, Theoretical and
Computational Basis towards Advanced CAD
Application, F. Kimura, Editor, Kluwer Academic
Publishers, Boston. p. 384.
28. Mäntylä, M., Nau, D. and Shah, J.J. (1996).
Challenges in Feature-Based Manufacturing
Research, Communication of the ACM, Volume
39, Issue 2, p. 77-85.
29. Pratt, M. and Srinivasan, V. (2003). Towards
a Neutral Specification of Geometric Features.
30. Salomons, O.W., Houten, F.J.A.M.v. and
Kals, H.J.J. (1993). Review of research in feature
based design, Journal of Manufacturing Systems,
Volume 12, Issue 2, p. 113-132.
31. Shah, J.J. and Mäntylä, M. (1995).
Parametric and feature-based CAD/CAM, ed.
J.W.s. Inc., New-York, USA.
32. Shah, J.J. and Rogers, M.T. (1988). Feature
Based Modeling Shell: Design and

ha
l-0

02
66

44
8,

 v
er

si
on

 1
 -

22
 M

ar
 2

00
8

 13

Implementation, Proceedings of the ASME
Conference on Computers in Engineering.
33. Collet, C., Huhns, M.N. and Shen, W. (1991).
Ressource Integration Using a Large Knowledge
Base in Carnot, IEEE Computer, p. 55-62.
34. Hayes, E.E. and Menzel, C.P. (2001). A
Semantics for Knowledge Interchange Format,
Working Notes of the IJCAI-2001 Workshop on
the IEEE Standard Upper Ontology, Seattle,
Washington, USA.
35. Genesereth, M. and Fikes, R. (2001).
Knowledge Interchange Format, Version 3.0
Reference Manual, Computer Science
Department, Stanford University, Stanford, CA,
USA.
36. Genesereth, M.R. (2000). Knowledge
Interchange Format, American National Standard
(dpANS).
37. Sowa, J.F., (2000). Glossary.
38. Cutting-Decelle, A. F., Young, R. I. M.,
Anumba, C. J., Baldwin A.N. and Bouchlaghem,
N. M. (2003). The Application of PSL to Product
Design Across Construction and Manufacturing,
CERA Journal, Volume 11, Number 1, March
2003.
39. Sudarsan, R., Han, Y., Feng, SC, Roy, U.,
Wang, F., Sriram, RD and Lyons, KW (2003).
Object-Oriented Representation of Electro-
Mechanical Assemblies Using UML, National
Institute of Standards and Technologies (NIST),
Gaithersburg, MD, USA.
40. ISO10303-48 (1992). STEP Product Data
Representation and Exchange, Integrated
Generic Ressources: Form Feature, International
Organisation for Standardization, Subcommittee
4, Part 48, NIST.

41. Dartigues, C. (2003). Product data exchange
in a collaborative environment, Computer
science, LIRIS - University of Lyon I, Lyon,
France, p. 179.

Denis PALLEZ is currently an associate

professor in the department of computer sciences at
the University of Lyon, France, in the LIRIS
laboratory (Lyon Research Center for Images and
Intelligent Information Systems). He obtained his
PhD in computer sciences in January 2000 at the
University of Metz (France). He also spent four
months as an invited researcher at the institute of
technology at Montreal (ETS). His research interest
is in the area of conceptual and functional design,
shape synthesis, collaborative modelling and more
recently, Interactive Evolutionary Computation.

ha
l-0

02
66

44
8,

 v
er

si
on

 1
 -

22
 M

ar
 2

00
8

