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Abstract:  
In a collaborative computer-supported engineering environment, the interoperation of various applications will 
need a representation that goes beyond the current geometry-based representation, which is inadequate for 
capturing semantic information. The primary purpose of this paper is to discuss a semantically-based information 
exchange protocol that will facilitate seamless interoperability among current and next generation computer-
aided design systems (CAD) and between CAD and other systems that use product data.    We describe an 
ontological approach to integrating computer-aided design (CAD) and computer-aided process planning (CAPP). 
Two commercial software applications are used to demonstrate our approach. The approach involves the 
development of a shared ontology and domain specific ontologies in the KIF (Knowledge Interchange Format) 
language. Domain specific ontologies--which are feature-based—are developed after a detailed analysis of the 
CAD and the CAPP software. Mapping between the domain ontologies and the shared ontology is achieved by 
several mapping rules. The approach is  validated by using a variety of parts. 
 
 
Keywords: CAD; CAPP; Interoperability; Ontologies; Design; Process Planning; Knowledge Interchange 
Format.

1. Introduction 

The early part of this millennium has witnessed 
the emergence of an Internet-based engineering 
marketplace, where engineers, designers, and 
manufacturers from small and large companies are 
collaborating through the Internet to participate in 
various product development and marketing 
activities [1, 2, 3, 4]. This will be further enhanced 
by the next generation manufacturing environment, 
which will consist of a network of engineering 
applications, where state of the art multi-media tools 
and techniques will enhance closer collaboration 
between geographically distributed applications, 
virtual reality tools will allow visualization and 
simulation in a synthetic environment, and 
information exchange standards will facilitate 
seamless interoperation of heterogeneous 
applications. The interoperation of various 
applications will need a representation that goes 
beyond the current geometry-based representation, 
which is inadequate for capturing semantic 
information. The primary purpose of this paper is to 
discuss a semantically-based information exchange 
protocol that will facilitate seamless interoperability 

among current and next generation computer-aided 
design systems (CAD) and between CAD and other 
systems that use product data. Our focus will be on 
design/process planning integration during the later 
design stages. We will then present in this paper an 
approach using a neutral format based on a feature 
ontology. Our work is then decomposed in three 
main phases that will be further explain in the rest of 
this paper, as shown in Figure 1: 
• The analysis of the two domains studied: detailed 

design and process planning, 
• The creation of the ontology and 
• The definition and implementation of mapping 

rules. 
In the next section we provide a brief overview 

of design/process planning integration. This will be 
followed by a discussion of representative standards 
for interoperating design and process planning. The 
need for ontological approaches is presented 
followed by descriptions of ontologies in the design 
and process planning domains and a common 
ontology. Rules for mapping from and to the 
common ontology are described. Finally, we 
illustrate our approach with an example. 

ha
l-0

02
66

44
8,

 v
er

si
on

 1
 - 

22
 M

ar
 2

00
8

Author manuscript, published in "Concurrent Engineering 15, 2 (2007) 237-249"

http://hal.archives-ouvertes.fr/hal-00266448/fr/
http://hal.archives-ouvertes.fr


 2 

2. Design/Process Planning Integration: 
An Overview 

Engineering a product involves several stages 
with considerable iterations, starting with planning 
products, generating product specifications, 
performing preliminary and detailed design, 
developing process plans, building product facilities, 
manufacturing product, managing workflow, and 
finally marketing and maintaining products [5]. In 
this paper we focus on an important aspect of the 
above cycle: design and process-planning 
integration. We believe that it is important to 
integrate design and process planning at various 
levels of abstraction, as errors made during early 
design stages could have a significant impact on the 
overall product quality and costs [5-8].  

Engineering design involves mapping a specified 
function (or functional specifications) onto a 
(description of a) realizable physical structure – the 
design artifact. Over the past several decades 
considerable research has been done in developing 
various design product and process models [9]. We 
will not delve into a detailed description of the 
design process, much as we feel a need for the 
adequate representations for process knowledge. The 
reader is referred to [5] for a formal description of a 

design process model. At this stage our primary 
concern is on the product or artifact representation. 
For this we use the NIST CORE product model 
presented in [10]. 

Process planning is an intermediate phase 
between design and manufacture [11, 12]. More 
precisely, it links these two decisive phases of 
product development [13]. It depends on choices 
made in design and determines precisely actions that 
will be achieved during manufacture (Figure 2). 
Different definitions have been given for process 
planning [7, 14, 15, 16]. We use the following 
definition in this paper: process planning is the 
phase that, from information generated during 
preliminary design (product geometry for instance), 
determines necessary operations and actions to 
transform a raw part in a finished or semi-finished 
part, the necessary human and material resources to 
manufacture the product, as well as the product 
development cost evaluation. 

A wide variety of manufacturing processes are 
available for the actual artifact production. In the 
current work we focus on the machining processes 
for part production, in particular material cutting 
processes. Figure 3 provides a representation of this 
process: the cutting tool comes against the surface, 
creating a chip that will be removed from the part. 

 ;A feature is the super type of: volume feature, transition 
;feature and feature pattern. 
(forall (?a) 
        (implies (feature ?a) 
                 (or (volume_feature ?a) 
                     (transition_feature ?a) 
                     (feature_pattern ?a)))) 
 
;A volume feature is the subtype of a feature. 
(forall (?a) 
        (implies (volume_feature ?a) 
                 (feature ?a))) 
… 
;Volume feature attributes are: associated volume and 
;cutting section type. 
(forall (?a) 
        (implies (volume_feature ?a) 
                 (exists (?b ?c) 
                         (and (associated_volume ?b) 
                              (cutting_section_type ?c) 
                              (optional_attribute ?b ?a) 
                              (optional_attribute ?c ?a) 
                              (is_composed_of ?a ?b) 
                              (is_composed_of ?a ?c))))) 
… 

;A subtractive volume feature is a volume feature whose 
;volume is subtracted from a pre-existing volume 
(forall (?a) 
        (implies (subtractive_volume_feature ?a) 
                 (and (volume_feature?a) 
                      (exists (?b ?c) 
                              (and (associated_volume ?b) 
                                   (is_composed_of ?a ?b) 
                                   (pre_existing_volume ?c) 
                                   (subtracted ?b ?c)))))) 
 
… 
;A void is a subtype of a subtractive volume feature 
(forall (?a) 
        (implies (void ?a) 
                 (subtractive_volume_feature ?a))) 
 
… 

 
Figure 1: Global process for data exchange using ontologies 
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manufacturing 
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The interactions between design and process 
planning occurs at various stages, from conceptual 
to detailed design/process planning as shown in 
Figure 4 [17]. 

Current interfaces between design and process 
planning are defined during the detailed design 
stage. This is primarily achieved through use of 
geometric features. However, there is considerable 
difference in the methods and terminology used: 
features are used to design a product (design by 
feature) [8, 13, 18, 19] while in process planning 
features are extracted from the product (design 
recognition or extraction) [13, 18, 19, 20, 21], and a 
consistent feature terminology does not exist for the 
two domains. Theses differences are illustrated in 
the software used by designers and process planners: 
• CAD software, such as Pro-Engineer and 

SolidWorks, offer a limited number of features to 
users. The objective is here to have a compact set 
of parametric features, which can help designers 
to intuitively find more suitable features. 

• CAPP software, such as PART, utilizes a feature 
extraction algorithm and contains a large number 
of features. The objective is not here to have a 
limited set of significant features but to have a 
very large number of features, which can improve 
the efficiency of the feature extraction algorithm. 
These different viewpoints of designers and 

process planners on features makes data exchange a 
tedious task. Although features are considered 
differently in design and process planning, they 
represent a natural link between these two domains. 
Hence, features provide a valuable mechanism for 
information exchange. Next we review the current 
standards in design and process planning 
interoperability and discuss extensions needed for 
feature-based interoperability. 

3. Standards for Interoperability 

We illustrate the interoperability issue between 
CAD systems by considering a potential information 
exchange scenario during the design of the Boeing 
777. For Boeing to incorporate Rolls Royce engines 

into the design, the data format has to be converted 
from Computer Vision’s CADDS (used by Rolls 
Royce) to Dassault’s CATIA. Similarly, for Rolls 
Royce to understand changes made by Boeing 
engineers, the data need to be converted from 
CATIA to CADDS. Hence, we need at least 2 
translators. For three systems this grows to 6 
translators and for n systems we need n(n-1) 
translators. Hence, there is a need to design, build, 
and maintain n(n-1) translators. A solution to this 
problem is to use a neutral format and make all the 
CAD applications output this format. Doing so will 
reduce the number of translators to 2*n, i.e., for each 
CAD system we will need two translators –- one 
from the CAD system to the neutral format and the 
other from the neutral format to the CAD. 

A standard of primary interest to design is ISO 
10303, also known informally as STEP [3, 34, 23] 
(Standard for the Exchange of Product model data) 
and developed by the International Organization for 
Standardization Technical Committee 184/ 
Subcommittee SC4 (ISO TC 184/SC4). Its intention 
is to enable the exchange of product model data 
between different modules of a product realization 
system, or the sharing of that data by different 
modules through the use of a common database [24]. 
The first parts of STEP to achieve International 
Standard status were published in 1994, but many 
other parts have since been published or are under 
development and will eventually be added to the 
standard. Recent updates (and other relevant details) 
can be found at the following websites: 
http://www.nist.gov/sc4, www.tc-184-sc4.org, and 
http://www.iso.ch/iso/en/ISOOnline.frontpage. 

ISO 10303 (STEP) consists of many parts and 
can be viewed as consisting of several layers. The 
top layer consists of a set of application protocols or 
APs, which address specific product classes and life-
cycle stages (e.g., mechanical, electronic, ships, 
automotive, design, process planning). These APs 
specify the actual data exchange, and are constructed 
from a lower layer set of modules called integrated 
resources, which are common for all disciplines. The 
language for modeling various STEP entities and 
their relationships is called EXPRESS. Other parts 
specify standard mechanisms for the actual transfer 
of data, the conformance testing methodology, and 
various test suites.  

The STEP AP most relevant to traditional CAD 
systems is called AP 203 and is entitled 
“Configuration Controlled 3D Designs of 
Mechanical Parts and Assemblies.” This protocol 
defines the data exchange of geometric entities and 
configuration control of products. AP 203 defines 
several levels of implementation –- called 
conformance classes –- which deal with increasing 
levels of sophistication.  

The primary emphasis of STEP AP 203 is on 
shape description plus product configuration data. 
Facilities have been provided for capturing, in 
standard format, the following representations: 2D  
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Figure 4: Design and process planning interfaces 
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drawings, 3D wireframes, surface models, and solid 
models. This reflects the state of CAD technology as 
it was when the STEP development effort 
commenced in the mid-1980s. However, CAD 
technology has progressed since that time, and most 
major CAD systems now provide facilities for 
parametric, variational (including constraints), 
and/or feature-based design. In addition many of 
these systems have facilities to record design 
histories. These systems generate additional 
information, beyond the pure shape descriptions 
created by older systems, and STEP AP 203 
currently provides no means for capturing and 
transmitting this additional information. The short 
term parametrics effort (which comes under 
Working Group 12 of ISO TC 184/SC4) is 
addressing this problem. 

Considerable research has been performed on 
mapping CAD data onto process planning systems. 
However, this work has met with limited success, 
such as the one reported by [25]. One problem with 
the current standards is the lack of integration 
between CAD data output and process planning 
input. For example, the primary focus of STEP AP 
203 is the interoperability between geometry-
centered CAD systems, while the focus of STEP AP 
224 (Mechanical product definition for process plans 
using machining features) has been on input to 
process planning systems with a primary focus on 
representation of machine features. The idea of 
features has been in vogue for some time and the 
literature is abound with definitions of features [15, 
19, 26-32]. For example, Shah et al. suggest that 
features “are primitive or low level designs with 
their attributes, qualifiers and restrictions which 
affect functionality and/or manufacturability. 
Features can describe form (size and shape), 
precision (tolerances and finishing), or materials 
(type, grade, properties and treatment), and vary 
with product and manufacturing process”. 

To achieve truly collaborative design and 
engineering, exchange representations of both 
design and process information must support 
multiple levels of abstraction. To adequately achieve 
this we will need a more formal method for 
representing features, such as the ontological 
approach described in the next section. Our 
approach has some similarities to the one presented 
in [33], but our overall methodology is different. 

4. Ontological Approach to 
Interoperability 

In all types of communication, the ability to 
share information is often hindered because the 
meaning of information can be drastically affected 
by the context in which it is viewed and interpreted. 
This is especially true in manufacturing, because of 
the growing complexity of manufacturing 

information and the increasing need to exchange this 
information among various software applications. 
Different representations of the same information 
may be based on different assumptions about the 
world, and use differing concepts and terminology -- 
and conversely, the same terms may be used in 
different contexts to mean different things. Often, 
the loosely defined natural-language definitions 
associated with the terms will be too ambiguous to 
make the differences evident, or will not provide 
enough information to resolve the differences. 

To address these challenges, various groups 
within industry, academia, and government have 
been developing sharable and reusable models 
known as ontologies [3]. All ontologies consist of a 
vocabulary along with some specification of the 
meaning or semantics of the terminology within the 
vocabulary. In doing so, ontologies support 
interoperability by providing a common vocabulary 
with a shared semantics. Rather than develop point-
to-point translators for every pair of applications, 
one simply needs to write one translator between the 
application's terminology and the common ontology. 
Similarly, ontologies support reusability by 
providing a shared understanding of generic 
concepts that span across multiple projects, tasks 
and environments. 

The various ontologies that have been developed 
can be distinguished by their degree of formality in 
the specification of meaning. With informal 
ontologies, the definitions are expressed loosely in 
natural language. Semi-formal ontologies, such as 
taxonomies, provide weak constraints for the 
interpretation of the terminology. Formal ontologies 
use languages based on mathematical logic. Informal 
and semi-formal ontologies can serve as a 
framework for shared understanding among people, 
but they are often insufficient to support 
interoperability, since any ambiguity can lead to 
inconsistent interpretations and hence hinder 
integration. 

Another source of semantic heterogeneity lies in 
the languages used to represent the ontologies. There 
have been several efforts within academia and 
industry to develop common languages that can be 
used as the basis for ontologies to support semantic 
integration; the most expressive is the Common 
Logic project, which combines the Knowledge 
Interchange Format [34-36] and Conceptual Graphs 
(CG) [37] languages. Common Logic includes a 
core language that has the expressiveness of first-
order logic; its syntax and semantics are those of 
traditional first-order logic. Some other languages 
has been based on Logic, such as PSL [38]. Most 
recently, this has been extended to include 
extensions that allow sorted formulae for the 
specification of class hierarchies, and the 
specification of the meta theory of KIF within the 
language itself. 
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Our objective in this paper consists in developing 
and implementing an approach for data exchange 
between designers and process planners. To realize 
this, we decided to develop a feature ontology. This 
ontology will represent all the common knowledge 
between designers and process planners as well as 
specific knowledge of both experts. We will use this 
ontology as depicted as follow: a designer creates an 
artifact shape model using a CAD software (such as 
Pro/Engineer); this model is then transform, using 
mapping rules (see Section 8), into instances of the 
shared ontology. These instances of the shared 
ontology are then transform, using other mapping 
rules, into a representation interpretable by CAPP 
software (such as Pro/Engineer). Features are then 
used not to realize features extraction or design by 
features: features represent for us a common 
knowledge that will be the base of our shared 
ontology for date exchange. In the next parts of this 
paper, we will present the design specific parts, the 
process planning specific parts and the design and 
process planning common parts of our ontology. We 
will continue with the description of the mapping 
rules used to translate data and we will finished by 
an example. 

5. Design Feature Ontology 

Our ultimate goal is to develop a comprehensive 
feature model that can be used through the entire 
design life cycle. However, for our prototype we 
restricted the NIST CPM’s extensions to the 

information generated by commercial CAD systems. 
To identify these concepts, we first performed an 
extensive analysis to understand various designers’ 
needs. This analysis phase involved: 
• The extraction of designer know-how--which is 

implicit--in order to formalize designer’s 
knowledge; and 

• The analysis of different CAD software such as 
Pro-Engineer and SolidWorks: we used them to 
create various parts in order to better understand 
the design process. 
Based on this analysis we concluded that the 

NIST CPM had most of the necessary classes to 
represent detailed design data. We added a few 
classes in order to increase the coverage to CAD 
software, such as: the datum coordinate system in 
which the artifact is defined, the dimensions 
associated to an artifact, the precision of the 
dimensions of an artifact, the different versions of an 
artifact and the constraints associated to each 
feature. Figure 5 represents these concepts. 

We also defined different kind of constraints as 
shown in Figure 6. The initial categories that we 
considered are position and orientation constraints, 
which can be further classified into attachment and 
geometric constraints. Attachment constraints 
specify how a feature instance is attached to the 
global model by coupling some of the feature faces 
with the pre-existing faces. Geometric constraints 
specify geometric relations such as parallelism of 
two faces or distance between two faces. Validity 
constraints correspond to another constraint category 
defined in our ontology. These validity constraints 
can be further classified into: 
• dimension constraints, which specify the 

authorized set of values for each feature 
parameter. e.g., radius parameter of a crossing 
hole can be limited to values between 1 and 10 
millimeters; 

• algebraic constraints, which are used when feature 
shapes are geometrically constrained with explicit 
relations (these relations can be simple equalities 
between two parameters or, in general, algebraic 
expressions implying two or more of two 
parameters or constants); 

• boundary constraints, which specify if feature 
faces is on the boundary or not on the boundary of 
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 6 

the conceived object; and 
• feature interaction constraints, which are used to 

indicate that a particular type of interaction is or is 
not allowed for a feature instance. 
The above extensions suffice to illustrate our 

approach. Additional classes will be needed for a 
wider coverage. KIF representations of a 
representative set are shown in Figure 7. 

6. Process Planning Ontology 

Our feature ontology is also representative of the 
process planning viewpoint. We followed a similar 
approach used for design: we asked process planners 
to describe how they work, what kind of information 
they need, what are the different phases of their 
work, etc. We also studied a CAPP software: PART. 
This analysis of process planning turned out to be a 
more difficult task than obtaining the design 
features. While designers have a consistent notion of 
what design is, process planners seem to be in less 
agreement on the terminology in their domain. 
Based on our discussions, we decided to use the 
concepts presented in Figure 8. 

In this figure, an artifact is associated with a 
manufacturing model. This model is used to create a 

process plan. The input of this process plan is a raw 
part and the output is a semi-finished or finished 
part. A process plan identifies the machining 
operations that are necessary to manufacture an 
artifact. Hence, a process plan is composed of 
machining setups, which contains all the machining 
operations that are realized with the same machine 
and without changing the attachments. For each 
machining setup, there is a set of machining 
operations. Each machining operation is then 
realized with the same machine and attachments. 
Each machining operation is composed of a set of 
machining sequences, which corresponds to a 
transformation of a part that is achieved with the 
help of a material removal tool moving according to 
a tool path. Finally, a machining operation modifies 
a surface in accordance to a required finish: raw, 
semi-finish, finish or super-finish. KIF 
representations of a representative set are shown in 
Figure 9. 

7. Common Feature Ontology 

The last part of our ontology corresponds to the 
common concepts between design and process 
planning and is composed of numerous classes and 
relationships. We base our ontology on the NIST 
Core Product Model (CPM). We used this model in 
order to take into account general concepts, initially 
present in this model, and we added more specific 
concepts allowing feature representation. (Figure 10) 
represents the main classes and relationships 
composing the Core Product Model and its 
extensions in this work, where the extensions are 
shown as darkened boxes (ideally, the NIST CPM 
should be a package in UML and our extensions 
should be in a separate package). The descriptions of 
key entities in the NIST CPM are as follows (taken 
from [10]). 

An Artifact  represents a distinct entity in a 
design, whether that entity is a component, product, 
subassembly or assembly. The Artifact ’s attributes 
refer to the Specification responsible for the Artifact 
and the Form, Function, and Behavior comprising 
the Artifact. The Function represents what the 

 ;A constraint is the super type of: technologic constraint,  
;economic constraint, validity constraint and position and  
;orientation constraint. 
(forall (?a) 
        (implies (constraint ?a) 
                 (or (technologic_constraint ?a) 
                     (economic_constraint ?a) 
                     (validity_constraint ?a) 
                     (position_orientation_constraint ?a)))) 
 
;A technologic constraint is the subtype of a constraint. 
(forall (?a) 
        (implies (technologic_constraint ?a) 
                 (constraint ?a))) 
 
;A validity constraint is the subtype of a constraint. 
(forall (?a) 
        (implies (validity_constraint ?a) 
                 (constraint ?a))) 
… 

 
Figure 7: KIF statements for constraint 
classification 
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Figure 8: Process planning specific classes 

 ;A manufacturing model uses a process plan 
(defrelation use (?a ?b):= 

(and  (manufacturing_model ?a) 
(process_plan ?b))) 

 
;Attributes of a process plan are: a set of machining setup, 
; an associated manufacturing model and specifications 
(forall (?a) 
(implies (process_plan ?a) 

  (exists (?l ?b ?c) 
   (and (associated_manufacturing_model ?b) 

        (specification ?c) 
         (machining_setup ?l) 

   (is_composed_of ?a ?b) 
        (is_composed_of ?a ?c) 
        (is_composed_of ?a ?l))))) 
… 

 
Figure 9: KIF statements for feature 
decomposition 
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 7 

Artifact  is supposed to do. The Artifact  satisfies the 
engineering requirements largely through its 
Functions. The term function is often used 
synonymously with the term intended behavior. The 
Form of the Artifact  can be viewed as the proposed 
design solution for the design problem specified by 
the Functions. More precisely, the physical 
characteristics of an Artifact  are represented in 
terms of its Geometry and Material  properties. 

Another important class of the Core Product 
Model is the Feature. An Artifact  is composed of a 
set of features, where a feature is a subset of the 
form of an object that has some function assigned to 
it. We can have several types of features: analysis 
features, design features, manufacturing features, 
interface or port features, etc., Compound features 
can be generated from primitive features. The notion 
of a feature is further elaborated in the work 
presented here. 

 We modified the NIST Core Product Model 
(CPM) by adding some concepts that are common to 
design and process planning, are both necessary for 
designers and process planners, and are considered 
in CAD and CAPP software. Examples of these 
include: 
• The surfaces composing any feature; 

• The tolerances associated to any feature (such as 
the perpendicularity between two surfaces) (a 
more complete treatment of tolerances and 
assemblies is provided in [39]); and 

• The units used to represent any artifact. 
Our main objective is to find a common feature 

representation between design and process planning. 
To do so, we extended NIST CPM to address the 
following: 
• The way each feature is represented, such as a B-

Rep representation, a CSG representation, a swept 
representation, etc. (Feature Representation 
concept); and 

• The elements composing each feature, such as a 
bottom side, an intermediary face, etc. (Feature 
Element concept). 
We also characterized a complete feature 

decomposition which is based on the feature 
categories proposed in the part 48 of STEP [40]. 
Figure 11 illustrates this decomposition. Features are 
classified into: 
• Volume features, which are viewed as a volume 

added to or subtracted from pre-existing volume; 
• Transition features, which are viewed as 

separating or blending two or more surface 
elements; and 

• Pattern features, which are viewed as a consisting 
of a number of identical sub features arranged in a 
mathematical pattern. 
Volume features can be subtractive or additive, 

and transition feature can be corner or flat 
transitions. A more detailed description of this 
decomposition can be seen at [40, 41]. 
The KIF version of representative entities is shown 
below (Figure 12). 

8. Mapping Rules For Case Study 

Once the feature ontology in various domains is 
defined, the next step is to define the mapping rules 
that will transform specific files onto instances of 
our common ontology. For our case study, we 
choose the following software: Pro-Engineer, which 
is used by CAD experts, and PART, which is used 
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Figure 10: Main class diagram of the Core Product 
Model and extensions 
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Figure 11: Feature decomposition 
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 8 

by CAPP experts. The methodology that we 
followed is described in Figure 13. 

We first analyzed the existing export and import 
formats of Pro-Engineer and PART. Then, we 
selected one format for each of them: a proprietary 
format for Pro-Engineer, Neutral File Format, and 
ACIS format for PART. Once the formats have been 
chosen, we analyzed the representation of different 
artifacts in the two formats. The objective is to 
extract all the important concepts represented in 
each file in order to correlate them with the domain 
ontology entities. Once this is done our approach 
utilizes two algorithms: one to translate a file 
generated by a CAD software into a set of instances 
of the feature ontology and one to translate this 
generated file into a file that can be interpreted and 
processed by a CAPP software. The inputs to the 
first algorithm are: 

• The file containing the entire description of the 
ontology, which is expressed in KIF, and 

• The file generated by the CAD software 
(Pro/Engineer in this case), which represents the 
geometry and topology of the part that has to be 
manufactured. 

• The inputs to the second algorithm are: 
• The file containing the entire description of the 

ontology, which is the common ontology 
expressed in KIF, and 

• The file generated by the first algorithm. 
As we previously stated, the only assumption 

made during the elaboration of the ontology and the 
mapping rules was that we only considered parts that 
do not have any assembly; solving this problem for 
simple machining parts containing only features by 
itself is a difficult task. Taking into account more 
complex parts containing for example assemblies 

 ;A feature is the super type of: volume feature, transition 
;feature and feature pattern. 
(forall (?a) 
        (implies (feature ?a) 
                 (or (volume_feature ?a) 
                     (transition_feature ?a) 
                     (feature_pattern ?a)))) 
 
;A volume feature is the subtype of a feature. 
(forall (?a) 
        (implies (volume_feature ?a) 
                 (feature ?a))) 
… 
;Volume feature attributes are: associated volume and 
;cutting section type. 
(forall (?a) 
        (implies (volume_feature ?a) 
                 (exists (?b ?c) 
                         (and (associated_volume ?b) 
                              (cutting_section_type ?c) 
                              (optional_attribute ?b ?a) 
                              (optional_attribute ?c ?a) 
                              (is_composed_of ?a ?b) 
                              (is_composed_of ?a ?c))))) 
… 

;A subtractive volume feature is a volume feature whose 
;volume is subtracted from a pre-existing volume 
(forall (?a) 
        (implies (subtractive_volume_feature ?a) 
                 (and (volume_feature?a) 
                      (exists (?b ?c) 
                              (and (associated_volume ?b) 
                                   (is_composed_of ?a ?b) 
                                   (pre_existing_volume ?c) 
                                   (subtracted ?b ?c)))))) 
 
… 
;A void is a subtype of a subtractive volume feature 
(forall (?a) 
        (implies (void ?a) 
                 (subtractive_volume_feature ?a))) 
 
… 

 
Figure 12: KIF statements for feature decomposition 
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Figure 13: Methodology for the elaboration of the validation prototype 
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 9 

would implies to modify both the ontology and the 
mapping rules. If the two algorithms that we 
developed do not provide a “correct mapping” then: 
• The mapping rules implemented in the algorithms 

are not correct; and/or 
• The ontology is not correct, in which case, we 

have to modify the ontology and then modify the 
mapping rules in order to take into account these 
changes. 
For a simple artifact such as a box with one hole 

(Figure 14), the file generated by Pro-Engineer is 
hierarchically structured: it contains the dimensions 
characterizing the artifact, the features used to build 
it, the surfaces determining the features and the 
edges composing the surfaces. PART files are totally 
different: information is stored with no specific 
order, and data contained in such files relates to 
geometric and topologic information. This kind of 
file format doesn’t explicitly provide information 
about features composing an artifact. 

Using different instances of Pro-Engineer and 
PART files, we extracted a list of entities or 
concepts and their attributes in these files. Example 
concepts are: plane surface, cylindrical surface, 
straight curve, linear curve, edge, point, vertex, etc. 
Once this analysis is done, we elaborated the 
mapping rules between a Pro-Engineer file and a file 
containing instances of our ontology and between 
this generated file and a PART file. The objective of 
these rules is to identify in our domain ontologies 
the entities that are equivalent to the concepts that 
we identified in Pro-Engineer and PART files. 
Initially we expressed these mapping rules 
graphically. In this graphical representation, we 
display the relationships between the attributes of 
the entities represented in Pro-Engineer or PART 
file and attributes of the entities of our ontology. 
Figure 15 shows the graphical representation of one 
such mapping rule. This mapping rule shows the 
correspondence between a plane surface expressed 

in a neutral file generated by Pro-Engineer and the 
equivalent concepts in our ontology. 

Once this step is finished, we obtained two sets 
of mapping rules. These mapping rules are 
expressed graphically. The next step consists in 
implementing these rules in order to be able to 
translate a CAD file into a CAPP file via our 
ontology. As we have previously stated, our method 
involves starting from a file generated by 
Pro/Engineer, applying a first set of mapping rules in 
order to generate a neutral file, and applying our 
second set of mapping rules on this neutral file in 
order to obtain a file interpretable by PART. A 
description of our mapping algorithm is shown in 
Figure 16. 

Starting from a CAD file generated by 
Pro/Engineer, we create all the features. For each 
feature, we have to extract from our ontology all the 
attributes that we have identified for a feature (for 
example the list of surfaces, the list of dimensions, 
etc.). For each of these attributes we search, still in 
our ontology, the nature of the attribute, which can 
be either simple (i.e., integer, string, boolean) or 

 Pro/Engineer file

#- HOST
#- VERS 0 0
…
1 dimensions [8]
2 dimensions
3 name d0
…
1 features [5]
2 features
…
2 features
# Protrusion
3 id 47
3 user_name NULL
…
1 surfaces [8]
2 surfaces
3 id 50
3 uv_min [2]
…
1 edges [18]
2 edges
3 id 51
…

PART file

700 0 1 0           

24 PART 6.1.000 07-JUN-2002 13 …

-0 body $-1 -1 $-1 $1 $-1 $2 #
-1 lump $-1 -1 $-1 $-1 $2 $0 #
-2 shell $-1 -1 $-1 $-1 $-1 $3 $-1 $1 #
-3 face $-1 -1 $-1 $4 $5 $2 $-1 $6 reversed single #

-4 face $-1 -1 $-1 $7 $8 $2 $-1 $9 forward single #

-5 loop $-1 -1 $-1 $10 $11 $3 #

-6 cone-surface $-1 -1 $-1 -52.5 -25 129 0 0 1 -13 011 0 1 I I 0 1 13 forward I I I I #
-7 face $-1 -1 $-1 $12 $13 $2 $-1 $14 reversed single #
-8 loop $-1 -1 $-1 $15 $16 $4 #

Pro/Engineer file

#- HOST
#- VERS 0 0
…
1 dimensions [8]
2 dimensions
3 name d0
…
1 features [5]
2 features
…
2 features
# Protrusion
3 id 47
3 user_name NULL
…
1 surfaces [8]
2 surfaces
3 id 50
3 uv_min [2]
…
1 edges [18]
2 edges
3 id 51
…

PART file

700 0 1 0           

24 PART 6.1.000 07-JUN-2002 13 …

-0 body $-1 -1 $-1 $1 $-1 $2 #
-1 lump $-1 -1 $-1 $-1 $2 $0 #
-2 shell $-1 -1 $-1 $-1 $-1 $3 $-1 $1 #
-3 face $-1 -1 $-1 $4 $5 $2 $-1 $6 reversed single #

-4 face $-1 -1 $-1 $7 $8 $2 $-1 $9 forward single #

-5 loop $-1 -1 $-1 $10 $11 $3 #

-6 cone-surface $-1 -1 $-1 -52.5 -25 129 0 0 1 -13 011 0 1 I I 0 1 13 forward I I I I #
-7 face $-1 -1 $-1 $12 $13 $2 $-1 $14 reversed single #
-8 loop $-1 -1 $-1 $15 $16 $4 #

Figure 14: Data declaration in Pro-Engineer and PART files for a simple 
artifact 
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Figure 15: Correspondence for plane surface 
between a Neutral file and our ontology 
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 10 

complex (i.e., the attribute is composed of sub-
attributes). If the attribute is a simple one, we extract 
in the initial file the associated value and we add a 
new instance in the neutral file. If the attribute is 
more complex, we consider each sub-attribute until 
all concepts appearing in the initial file have been 
instantiated. The advantage of this algorithm is that 
if we decide to change the attributes of one of the 
concepts of the ontology –for example if we delete 
one attribute of the concept feature- the algorithm 
will not have to be change because the number of 
attributes of a concept is calculated each time the 
algorithm is running. 

We also implemented a user interface for our 
prototype. This interface allows us to visualize the 
different artifacts that we considered, the Pro-

Engineer file, the file generated by our prototype and 
containing instances of our ontology, the file in 
which the ontology is coded and also a graphical 
representation of the artifacts that we considered. 
Figure 17 shows a typical screen of our prototype, 
which is implemented at University Claude Bernard 
of Lyon, FRANCE. 

We tested our methodology and our prototype 
with different examples. For our initial prototype we 
considered only simple parts (see Figure 18), with 
great success.  Our plans are to extend this work for 
complex artifacts (e.g., assemblies).  

The result of our approach is shown in the Figure 
19. 

 Create a feature instance 

For each feature attribute do 

Create an instance of the attribute 

For each sub- attribute do 
 

… 

If the attribute is a simple one (integer, string, etc.) 

Else find its sub-attributes 

Find all feature attributes 

Feature 
ontology 

Find the type of the attribute 

Find its value in the initial file (Pro-Engineer or PART file) 
 

Pro-Engineer 
or PART file 

 
Figure 16: General algorithm for data exchange 

 
Figure 17: Screen of the prototype to visualize a file 

ha
l-0

02
66

44
8,

 v
er

si
on

 1
 - 

22
 M

ar
 2

00
8



 11 

Summary 

In this paper we have described an ontological 
approach to integrating computer-aided design 
(CAD) and computer-aided process planning 
(CAPP). Two commercial software applications 
were used to demonstrate our approach. The 
approach involved the development of a shared 
ontology and domain specific ontologies in the KIF 
(Knowledge Interchange Format) language. Domain 
specific ontologies--which were feature-based--were 
developed after a detailed analysis of the CAD and 
the CAPP software. Mapping between the domain 
ontologies and the shared ontology was achieved by 
several mapping rules. The approach was validated 

by using a variety of parts. 

Disclaimer 

No approval or endorsement of any commercial 
product by the National Institute of Standards and 
Technology or by University Claude Bernard of 
Lyon is intended or implied.  Certain commercial 
equipments, instruments, or materials are identified 
in this report in order to facilitate better 
understanding.  Such identification does not imply 
recommendations or endorsement by the National 
Institute of Standards and Technology or by 
University Bernard of Lyon, nor does it imply the 
materials or equipment identified are necessarily the 
best available for the purpose. 
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